

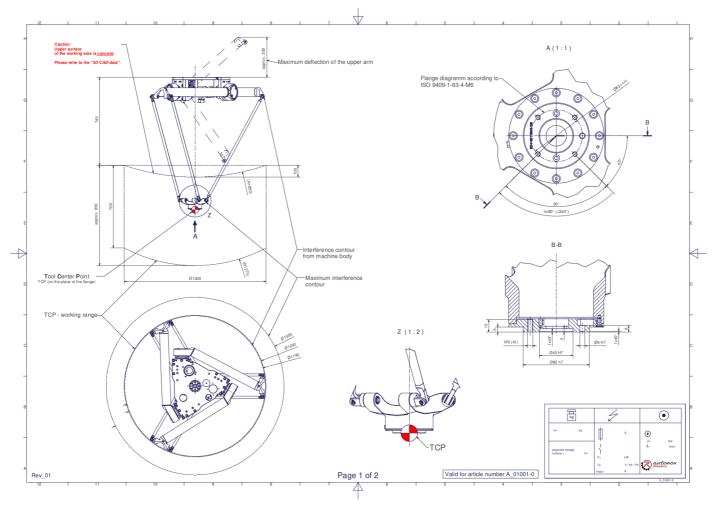
Product data sheet https://autonoxfinder.com/en/A_01001-0

Date of download: Oct 18, 2025 Time of download: 03:26 UTC

DELTA RLZ3-1200-3kg

Article number: A_01001-0

Lubricant variant: Synthetic lubricants


Description:

This type of robot is based on the principle of parallel kinematics. All drives are mounted in a fixed position on the robot head. Motor cables are not moved. The robot has three (3) translational degrees of freedom.

Scope of delivery:

Robot mechanics incl. gearbox, Servo motor adapter, Threaded protection caps, Transport and packing instructions

Connecting dimensions:

<u>Downloads:</u> <u>Connecting dimensions (PDF)</u> <u>3D model (STP)</u> <u>3D model (PDF)</u>

Product data sheet https://autonoxfinder.com/en/A_01001-0

Date of download: Oct 18, 2025 Time of download: 03:26 UTC

Technical specifications:

Field of analization	Chandard (not burianis)	
Field of application	Standard (not hygienic)	
Kinematics	Parallel	
Translatory Degrees of Freedom (X,Y,Z)	3	
Rotational Degrees of Freedom (α, B, γ)	0	
Nominal payload [kg lbs] *	3 6.6	
Working area-diameter [mm in]	1200 47.2	
Working height outside [mm in]	700 27.6	
Working height center [mm in]	850 33.5	
Length of the tool holder extension [mm in]	0	
Bearing type of the arm joints	Roller bearing	
Lubricants of the bearings	Synthetic	
Lubricants of the gearboxes	Synthetic	
Cleaning	No high pressure	
Ambient temperature [°C °F]	0 to +40 +32 to +104	
Relative humidity level [%]	95 (free of condensation)	
Mounting position	Floor, Ceiling, Wall (on request), Angle (on request)	
Robot weight without drive engineering (esp. drive) [kg lbs]	44 97.0	

^{*} All given values are nominal values (nominal payload referred to a nominal performance) and can vary under realworld conditions depending on the application (tool specifications, load distances, reduction (partly) of the nominal performance when using food-grade lubricants, ...). Please consider our technical data sheets regarding the load capacity.

Gearbox article number for this robot mechanics:

Function	Article number	Document
Drive of the upper arms	MT_BGR00021338	Operating manual gearbox type 8 (PDF)