

Product data sheet https://autonoxfinder.com/en/A_00045.01-FO

Date of download: Oct 21, 2025 Time of download: 13:29 UTC

DELTA RL5-1350-1kg

Article number: A_00045.01-FO

Lubricant variant: Food-grade lubricants (FO)

Description:

This type of robot is based on the principle of parallel kinematics. All drives are mounted in a fixed position on the robot head. Motor cables are not moved. The robot has three (3) translational and two (2) rotational degrees of freedom.

Scope of delivery:

Robot mechanics incl. gearbox, Servo motor adapter, Threaded protection caps, Transport and packing instructions

Connecting dimensions:

<u>Downloads:</u> <u>Connecting dimensions (PDF)</u> <u>3D model (STP)</u> <u>3D model (PDF)</u>

Product data sheet https://autonoxfinder.com/en/A_00045.01-FO

Date of download: Oct 21, 2025 Time of download: 13:29 UTC

Technical specifications:

Field of application	Standard (not hygienic)
Kinematics	Parallel
Translatory Degrees of Freedom (X,Y,Z)	3
Rotational Degrees of Freedom (α,β,γ)	2
Nominal payload [kg lbs] *	1 2.2
Working area-diameter [mm in]	1350 53.1
Working height outside [mm in]	295 11.6
Max. acceleration torque of the rotation α/β around X/Y at the output [Nm $ $ in.lbs]	16 141.6
Nominal torque of the rotation α/β around X/Y at the output [Nm \mid in.lbs]	16 141.6
Max. speed of the rotation α/β around X/Y at the output [1/min]	82
Nominal speed of the rotation α/β around X/Y at the output [1/min]	82
Max. acceleration torque of the rotation y around Z at the output [Nm in.lbs]	13 115.1
Nominal torque of the rotation y around Z at the output [Nm in.lbs]	12,4 109.7
Max. speed of the rotation γ around Z at the output [1/min]	500
Nominal speed of the rotation y around Z at the output [1/min]	380
Bearing type of the telescopic shaft(s)	Roller bearing: rotation α/β around X/Y; Journal bearing: rotation γ around Z
Bearing type of the arm joints	Roller bearing
Lubricants of the bearings	Food-grade (FO)
Lubricants of the gearboxes	Food-grade (FO)
Cleaning	No high pressure
Ambient temperature [°C °F]	0 to +40 +32 to +104
Relative humidity level [%]	95 (free of condensation)
Mounting position	Floor, Ceiling, Wall (on request), Angle (on request)
Robot weight without drive engineering (esp. drive) [kg lbs]	34 75.0

^{*} All given values are nominal values (nominal payload referred to a nominal performance) and can vary under realworld conditions depending on the application (tool specifications, load distances, reduction (partly) of the nominal performance when using food-grade lubricants, ...). Please consider our technical data sheets regarding the load capacity.